
Your boss is so pleased with how you conducted your �rst digital forensic

investigation that she has given you the day o�! Unfortunately, you and I both

know that doesn’t mean you’re free to take o� down the pub. Operational

leave from investigations should always be relished and is the perfect time to

conduct research and development. As you’ve recently been learning about

the Windows Registry and how it works, you decide that’s a good place to

focus your learning e�orts.

The Windows Registry is a hive of malware persistence blind spots, most of

which are either poorly documented or not documented at all. Although it

would make for an exciting BSides presentation to �nd some new and novel

Windows Registry persistence mechanisms, you decide it best to research

and catalogue already known and well-documented methods.

ZEIT8028 Lab 3: Registry Forensics file:///home/analyst/wiki/labs/lab3.html

1 of 10 23/10/23, 21:06

file:///home/analyst/wiki/index.html
file:///home/analyst/wiki/index.html
file:///home/analyst/wiki/index.html
file:///home/analyst/wiki/index.html
file:///home/analyst/wiki/labs/lab3.html#sidebar

Instead of documenting your research in a form that you might forget, you

decide that you’ll incorporate your �ndings into a tool instead. Therefore,

your task is to create your �rst forensic analysis tool, in Python. Not only will

you learn something new, but you’ll also create an automated tool that can

be used in all your future forensic investigations.

Your �rst task is to read the provided

 blog published by INFOSEC Institute. You can �nd a copy of the

blog at the following location within the Lab 3 - Registry Forensics.7z

lab �le bundle:

PATH: ./blog/Common Malware Persistence Mechanisms.htm

ZEIT8028 Lab 3: Registry Forensics file:///home/analyst/wiki/labs/lab3.html

2 of 10 23/10/23, 21:06

Your next task is to implement a registry persistence analysis tool that will

enumerate all the known Windows Registry keys that you have learnt about

in the blog. The tool is to be written in Python.

For your convenience, someone has already started developing your tool for

you. Open and begin extending the Python program located at the following

location within the Lab 3 - Registry Forensics.7z lab �le bundle:

PATH: ./findbadness.py

To help you complete this task, numerous resources have been made

available to you:

PATH: ./doc/python-2.7.16-docs-html/index.html

NOTE: The full Python 2.7 offline documentation

PATH: ./Registry/

NOTE: A Python package that includes low level Windows Registry

support

PATH: ./doc/reg-doc/

NOTE: Additional Windows Registry documentation

PATH: ./reference_data/

NOTE: A collection of NIST reference Windows Registry hives

PATH: ./regview.py

NOTE: A graphical Windows Registry hive viewer

Your completed tool will come in very handy for future investigations (hint

hint), so put it aside somewhere safe for future use.

ZEIT8028 Lab 3: Registry Forensics file:///home/analyst/wiki/labs/lab3.html

3 of 10 23/10/23, 21:06

https://www.cfreds.nist.gov/winreg/cfreds-2017-winreg/cfreds-2017-winreg.html
https://www.cfreds.nist.gov/winreg/cfreds-2017-winreg/cfreds-2017-winreg.html

▾

You can open the provided code in your VM using VS Code (make sure

you're in the correct directory �rst):

analyst@forensics~$ code findbadness.py

▾

It's probably easier to copy the registry hives to a working directory:

analyst@forensics~$ cp findbadness.py ~/Documents/

analyst@forensics~$ cp reference_data/Win10_10586_IE11+Edge

/p1/Windows/System32/config/SYSTEM ~/Documents/

analyst@forensics~$ cp reference_data/Win10_10586_IE11+Edge

/p1/Windows/System32/config/SOFTWARE ~/Documents/

analyst@forensics~$ cp reference_data/Win10_10586_IE11+Edge

/p1/Users/Forensics/NTUSER.DAT ~/Documents/

analyst@forensics~$ cd ~/Documents

analyst@forensics~$ ls -lah

total 86M

drwxr-xr-x 2 analyst analyst 4.0K Mar 5 00:54 .

drwxr-xr-x 13 analyst analyst 4.0K Mar 5 00:45 ..

-rw-r--r-- 1 analyst analyst 2.8K Mar 5 00:54 findbadness.py

-rw-r--r-- 1 analyst analyst 768K Mar 5 00:54 NTUSER.DAT

-rw-r--r-- 1 analyst analyst 74M Mar 5 00:54 SOFTWARE

-rw-r--r-- 1 analyst analyst 11M Mar 5 00:54 SYSTEM

▾

Run the script to get an understanding of what it does:

analyst@forensics~$ python3 findbadness.py

usage: findbadness.py [-h] -f FILEPATH

findbadness.py: error: argument -f is required

analyst@forensics~$ python3 findbadness.py -f SYSTEM

[*] Attempting to open registry hive at location [/home/analyst

/Scratch/SYSTEM]

[*] Attempting to acquire root key of hive

[*] Enumerating children of the root key [ROOT]

[ROOT]

 +-- [ActivationBroker]

ZEIT8028 Lab 3: Registry Forensics file:///home/analyst/wiki/labs/lab3.html

4 of 10 23/10/23, 21:06

 +-- [ControlSet001]

 +-- [DriverDatabase]

 +-- [HardwareConfig]

 +-- [Keyboard Layout]

 +-- [Maps]

 +-- [MountedDevices]

 +-- [ResourceManager]

 +-- [ResourcePolicyStore]

 +-- [RNG]

 +-- [Select]

 +-- [Setup]

 +-- [Software]

 +-- [WPA]

[*] Fin

▾

The findbadness.py script contains functions to enumerate the registry

paths and keys. Your task is to add functionality to retrieve keys, values, and

types additionally. To achieve that, it's helpful to �rst add to the script a

function to convert the hivepaths:

def convert_to_hive_path(key_path):

 hive_path = ''

 result =

re.match(r'(?i)HKEY_CURRENT_USER|HKCU|HKEY_LOCAL_MACHINE|HKLM',

key_path)

 if result is not None:

 root_key_name = result.group(0).upper()

 if root_key_name in ['HKEY_LOCAL_MACHINE','HKLM']:

 subkey = key_path[len(result.group(0))+1:]

 result = re.match(r'(?i)SOFTWARE|SYSTEM', subkey)

 if result is not None:

 hive_path += subkey[len(result.group(0))+1:]

 else:

 raise UnsupportedNameKeyPathException

 elif root_key_name in ['HKEY_CURRENT_USER', 'HKCU']:

 hive_path += key_path[len(result.group(0))+1:]

 else:

ZEIT8028 Lab 3: Registry Forensics file:///home/analyst/wiki/labs/lab3.html

5 of 10 23/10/23, 21:06

 raise UnsupportedNameKeyPathException

 return hive_path

Then, extend the main function to return data about the keys, values, and

types:

def main():

...

 # convert to hive key naming convention

 hive_path = convert_to_hive_path(name_key_path)

 # find and print name key values and data

 print('[*] Attempting to open name key

[{}]'.format(name_key_path))

 name_key = reg.open(hive_path)

 print('\nName key name: {}'.format(name_key_path))

 print('Name key last update datetime:

{}'.format(name_key.timestamp()))

 value_key_count =name_key.values_number()

 print('Name key value key count:

{}\n'.format(value_key_count))

 print('[*] Attempting to enumerate value keys')

 if value_key_count > 0:

 for value_key in name_key.values():

 print('\n+-- Value key name:

{}'.format(value_key.name()))

 print('+-- Value key value type:

{}'.format(value_key.value_type_str()))

 if value_key.value_type() ==

Registry.RegBin:

 print('+-- Value key data:

{}'.format([byte for byte in value_key.value()]))

 else:

 print('+-- Value key data:

{}'.format(value_key.value()))

 else:

 print('\n+-- Name key contains no value keys')

...

 return

if __name__ == "__main__":

 main()

ZEIT8028 Lab 3: Registry Forensics file:///home/analyst/wiki/labs/lab3.html

6 of 10 23/10/23, 21:06

You should modify it to include the additional registry key/value pairs, etc.

listed in the blog you read at the top of the lab.

Download a sample solution

Check the sample solution �le and associated walkthrough video for further

information.

As you discovered during your �rst investigation, MFT timeline analysis is a

very powerful technique. Wouldn’t it be handy if you could create a similar

timeline using the Windows Registry, using a registry key’s last update time?

Your next task is to write a tool (or extend the tool you wrote in the previous

exercise) that parses a registry hive and outputs all the keys and their related

value data key pairs in chronological order, using the key’s .

▾

You can use the following function to sort the parsed registry keys:

 # sort name keys by datetime

 print('[*] Sorting name keys in registry hive by datetime')

 name_keys.sort(key=lambda x: x[0])

ZEIT8028 Lab 3: Registry Forensics file:///home/analyst/wiki/labs/lab3.html

7 of 10 23/10/23, 21:06

file:///home/analyst/wiki/labs/lab-3-registry-forensics-exercise-2-solution.py
file:///home/analyst/wiki/labs/lab-3-registry-forensics-exercise-2-solution.py

▾

Use the following function to enumerate the key names, paths, and

timestamps:

def enumerate_all_children_name_keys(root_name_key):

 name_keys = []

 def recursively_hunt_namekeys(root_name_key, depth=0,

maxdepth=0):

 if depth <= maxdepth:

 path = root_name_key.path()[5:]

 timestamp = root_name_key.timestamp()

 name_keys.append((timestamp, path))

 if root_name_key.subkeys_number() > 0:

 for name_key in root_name_key.subkeys():

 recursively_hunt_namekeys(name_key,

depth=depth+1, maxdepth=maxdepth)

 recursively_hunt_namekeys(root_name_key, maxdepth=15)

 return name_keys

▾

Use this function to print your desired output:

 # print sorted summarized name keys and name values

 print('[*] Commencing printing of name key summaries')

print('datetime,name_key_path,value_key_name,value_key_type,value_key_data')

 for entry in name_keys:

 timestamp, name_key_path = entry

 name_key = reg.open(name_key_path)

 if name_key.values_number() > 0:

 for value_key in name_key.values():

 try:

 # check for type Regin and present data as

byte list

 if value_key.value_type() ==

Registry.RegBin:

 print('{},{},{},

{},{}'.format(timestamp, name_key_path,value_key.name(),

value_key.value_type_str(), [byte for byte in

value_key.value()]))

 else:

 print('{},{},{},

ZEIT8028 Lab 3: Registry Forensics file:///home/analyst/wiki/labs/lab3.html

8 of 10 23/10/23, 21:06

{},{}'.format(timestamp, name_key_path,value_key.name(),

value_key.value_type_str(), value_key.value()))

 except (UnicodeDecodeError, UnicodeEncodeError,

Registry.RegistryParse.UnknownTypeException):

 # pass registry name keys that have

unsupported types and unicode encoding/decoding issues

 pass

 else:

 print('{},{},,'.format(timestamp, name_key_path))

 print('\n[*] Fin')

 return

▾

Download a sample solution

Check the sample solution �le and associated walkthrough video for further

information.

If you’ve made it this far and are wanting a slightly more di�cult challenge,

ZEIT8028 Lab 3: Registry Forensics file:///home/analyst/wiki/labs/lab3.html

9 of 10 23/10/23, 21:06

file:///home/analyst/wiki/labs/lab-3-registry-forensics-exercise-3-solution.py
file:///home/analyst/wiki/labs/lab-3-registry-forensics-exercise-3-solution.py

there’s yet another tool that can be added to your bag of tricks: a tool that

allows you to enumerate or search deleted registry keys.

It is likely that you’ll have to do some research. The required reading has

been made available to you at the following location within the Lab 3 -

Registry Forensics.7z lab �le bundle:

PATH: ./doc/reg-doc/TheWindowsNTRegistryFileFormat.pdf

▾

Not this time :D (It's supposed to be a challenge!)

ZEIT8028 Lab 3: Registry Forensics file:///home/analyst/wiki/labs/lab3.html

10 of 10 23/10/23, 21:06

